Multimodal Semantics Extraction from User-Generated Videos

نویسندگان

  • Francesco Cricri
  • Kostadin Dabov
  • Mikko Roininen
  • Sujeet Mate
  • Igor D. D. Curcio
  • Moncef Gabbouj
چکیده

User-generated video content has grown tremendously fast to the point of outpacing professional content creation. In this work we develop methods that analyze contextual information of multiple user-generated videos in order to obtain semantic information about public happenings (e.g., sport and live music events) being recorded in these videos. One of the key contributions of this work is a joint utilization of different data modalities, including such captured by auxiliary sensors during the video recording performed by each user. In particular, we analyze GPS data, magnetometer data, accelerometer data, videoand audio-content data. We use these data modalities to infer information about the event being recorded, in terms of layout (e.g., stadium), genre, indoor versus outdoor scene, and the main area of interest of the event. Furthermore we propose a method that automatically identifies the optimal set of cameras to be used in a multicamera video production. Finally, we detect the camera users which fall within the field of view of other cameras recording at the same public happening. We show that the proposed multimodal analysis methods perform well on various recordings obtained in real sport events and live music performances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Video Trailers

Query-based video summarization is the task of creating a brief visual trailer, which captures the parts of the video (or a collection of videos) that are most relevant to the user-issued query. In this paper, we propose an unsupervised label propagation approach for this task. Our approach effectively captures the multimodal semantics of queries and videos using state-of-the-art deep neural ne...

متن کامل

Predicting Emotions in User-Generated Videos

User-generated video collections are expanding rapidly in recent years, and systems for automatic analysis of these collections are in high demands. While extensive research efforts have been devoted to recognizing semantics like “birthday party” and “skiing”, little attempts have been made to understand the emotions carried by the videos, e.g., “joy” and “sadness”. In this paper, we propose a ...

متن کامل

Fast Summarization of User-Generated Videos Using Semantic, Emotional and Quality Clues

This paper introduces a novel approach for fast summarization of user-generated videos (UGV). Different from other types of videos where the semantic contents may vary greatly over time, most UGVs contain only a single shot with relatively consistent high-level semantics and emotional content. Therefore, a few representative segments are generally sufficient for a summary, which can be selected...

متن کامل

Towards an intelligent framework for multimodal affective data analysis

An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information e...

متن کامل

Zero-Shot Event Detection by Multimodal Distributional Semantic Embedding of Videos

We propose a new zero-shot Event Detection method by Multi-modal Distributional Semantic embedding of videos. Our model embeds object and action concepts as well as other available modalities from videos into a distributional semantic space. To our knowledge, this is the first Zero-Shot event detection model that is built on top of distributional semantics and extends it in the following direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. in MM

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012